arctanx/x²的不定积分(arctanx的不定积分积分)
•
2024-06-18 07:30:50
摘要 大家好,飞飞今天来为大家解答以下的问题,关于arctanx/x²的不定积分,arctanx的不定积分积分这个很多人还不知道,那么下面让我带着大家一起...
大家好,飞飞今天来为大家解答以下的问题,关于arctanx/x²的不定积分,arctanx的不定积分积分这个很多人还不知道,那么下面让我带着大家一起来看看吧!
用分部积分解决∫ arctanx dx=xarctanx-∫ x d(arctanx)=xarctanx-∫ x /(1+x^2) dx=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2) =xarctanx-(1/2)ln(1+x^2)+C扩展资料:在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′ =f。
分部积分法不定积分设函数和u,v具有连续导数,则d(uv)=udv+vdu。
移项得到udv=d(uv)-vdu两边积分,得分部积分公式∫udv=uv-∫vdu。
称公式为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.分部积分公式运用成败的关键是恰当地选择u,v一般来说,u,v选取的原则是:积分容易者选为v, 2、求导简单者选为u。
例子:∫Inx dx中应设U=Inx,V=x分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。
实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.可以证明,任何真分式总能分解为部分分式之和。
参考资料:百度百科-不定积分。
本文分享完毕,希望对大家有所帮助哦。
版权声明:本文由用户上传,如有侵权请联系删除!
标签:
arctanx的不定积分积分