您的位置:首页 >综合要闻 >正文

勾股数的规律口诀(勾股数的规律)

摘要 大家好,飞飞今天来为大家解答以下的问题,关于勾股数的规律口诀,勾股数的规律这个很多人还不知道,那么下面让我带着大家一起来看看吧!勾股...

大家好,飞飞今天来为大家解答以下的问题,关于勾股数的规律口诀,勾股数的规律这个很多人还不知道,那么下面让我带着大家一起来看看吧!

勾股数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。

①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起九没有间断过。

计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。

②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。

③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。

勾股数 - 构成直角三角形的充分且必要条件设直角三角形三边长为a、b、c,由勾股定理知a2+b2=c2,这是构成直角三角形三边的充分且必要的条件。

因此,要求一组勾股数就是要解不定方程x2+y2=z2,求出正整数解。

例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。

此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-n2+1。

如:6、8、10,8、15、17、10、24、26…等。

再来看下面这些勾股数:3、4、5、5、12、13,7、24、25、9、40、41,160、61…这些勾股数都是以奇数为一边构成的直角三角形。

由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证。

勾股数 - 特点观察分析上述的勾股数,可看出它们具有下列二个特点:直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。

2、一个直角三角形的周长等于短直角边的平方与这边的和。

掌握上述二个特点,为解一类题提供了方便。

例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?用特点1解:设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。

用特点2解:此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182。

本文分享完毕,希望对大家有所帮助哦。

版权声明:本文由用户上传,如有侵权请联系删除!