二进制乘法运算法则(二进制乘法)
大家好,飞飞今天来为大家解答以下的问题,关于二进制乘法运算法则,二进制乘法这个很多人还不知道,那么下面让我带着大家一起来看看吧!
二进制乘法和加法都是通过对二进制数的移位来实现的,移位相当于×2,计算机算根据给出的加法式子与乘法式子算要移多少位。
扩展:二进制数据的表示法 二进制数据也是采用位置计数法,其位权是以2为底的幂。
例如二进制数据110.11,其权的大小顺序为2^2、2^2^0、2^-2^-2。
对于有n位整数,m位小数的二进制数据用加权系数展开式表示,可写为: (a(n-1)a(n-2)…a(-m))2=a(n-1)×2^(n-1)+a(n-2)×2^(n-2)+……+a(1)×2^1+a(0)×2^0+a(-1)×2^(-1)+a(-2)×2^(-2)+……+a(-m)×2^(-m) 二进制数据一般可写为:(a(n-1)a(n-2)…a(1)a(0).a(-1)a(-2)…a(-m))2。
注意: 1.式中aj表示第j位的系数,它为0和1中的某一个数。
2.a(n-1)中的(n-1)为下标,输入法无法打出所以用括号括住,避免混淆。
3.2^2表示2的平方,以此类推。
【例1102】将二进制数据111.01写成加权系数的形式。
解:(111.01)2=(1×2^2)+(1×2^1)+(1×2^0)+(0×2^-1)+(1×2^-2) 二进制和十六进制,八进制一样,都以二的幂来进位的。
二进制数据的算术运算的基本规律和十进制数的运算十分相似。
最常用的是加法运算和乘法运算。
1. 二进制加法 有四种情况: 0+0=0 0+1=1 1+0=1 1+1=10 进位为1 【例1103】求 (1101)2+(1011)2 的和 解: 1 1 0 1 + 1 0 1 1 ------------------- 1 1 0 0 0 2. 二进制乘法 有四种情况: 0×0=0 1×0=0 0×1=0 1×1=1 【例1104】求 (1110)2 乘(101)2 之积 解: 1 1 1 0 × 1 0 1 ----------------------- 1 1 1 0 0 0 0 0 1 1 1 0 ------------------------- 1 0 0 0 1 1 0 (这些计算就跟十进制的加或者乘法相同,只是进位的数不一样而已,十进制的是到十才进位这里是到2就进了) 3.二进制减法 0-0=0,1-0=1,1-1=0,10-1=1。
4.二进制除法 0÷1=0,1÷1=1。
[1][2] 5.二进制拈加法 拈加法二进制加减乘除外的一种特殊算法。
拈加法运算与进行加法类似,但不需要做进位。
此算法在博弈论(Game Theory)中被广泛利用。
十进制数转换为二进制数、八进制数、十六进制数的方法: 二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法 1.二进制与十进制间的相互转换: (1)二进制转十进制 方法:“按权展开求和” 例: (1011.01)2 =(1×2^3+0×2^2+1×2^1+1×2^0+0×2^(-1)+1×2^(-2) )10 =(8+0+2+1+0+0.25)10 =(11.25)10 规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十 分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
注意:不是任何一个十进制小数都能转换成有限位的二进制数。
(2)十进制转二进制 · 十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法) 例: (89)10 =(1011001)2 2 89 ……1 2 44 ……0 2 22 ……0 2 11 ……1 2 5 ……1 2 2 ……0 1 · 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法) 例: (0.625)10= (0.101)2 0.625X2=1.25 ……1 0.25 X2=0.50 ……0 0.50 X2=1.00 ……1 2.八进制与二进制的转换: 二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。
八进制数字与二进制数字对应关系如下: 000 -> 0 100 -> 4 001 -> 1 101 -> 5 010 -> 2 110 -> 6 011 -> 3 111 -> 7 例:将八进制的37.416转换成二进制数: 3 7 . 4 1 6 011 111 .100 001 110 即:(37.416)8 =(11111.10000111)2 例:将二进制的10110.0011 转换成八进制: 0 1 0 1 1 0 . 0 0 1 1 0 0 2 6 . 1 4 即:(10110.011)2 = (26.14)8 3.十六进制与二进制的转换: 二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。
十六进制数转换成二进制数:把每一个十六进制数转换成4位的二进制数,就得到一个二进制数。
十六进制数字与二进制数字的对应关系如下: 0000 -> 0 0100 -> 4 1000 -> 8 1100 -> C 0001 -> 1 0101 -> 5 1001 -> 9 1101 -> D 0010 -> 2 0110 -> 6 1010 -> A 1110 -> E 0011 -> 3 0111 -> 7 1011 -> B 1111 -> F 例:将十六进制数5DF.9 转换成二进制: 5 D F . 9 0101 1101 1111 .1001 即:(5DF.9)16 =(10111011111.1001)2 例:将二进制数1100001.111 转换成十六进制: 0110 0001 . 1110 6 1 . E 即:(1100001.111)2 =(61.E)16。
本文分享完毕,希望对大家有所帮助哦。
版权声明:本文由用户上传,如有侵权请联系删除!